Simultaneous strong proximinality in Banach spaces
نویسندگان
چکیده
منابع مشابه
Strong proximinality and intersection properties of balls in Banach spaces
We investigate a variation of the transitivity problem for proximinality properties of subspaces and intersection properties of balls in Banach spaces. For instance, we prove that if Z ⊆ Y ⊆ X, where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y is an M -ideal in X, then Z is strongly proximinal in X. Towards this, we prove that a finite co-dimensional proxi...
متن کاملTransitivity of various notions of proximinality in Banach spaces
We derive transitivity of various degrees of proximinality in Banach spaces. When the transitivity does not carry forward to the bigger space we investigate these properties under some additional assumptions of the intermediate space. For instance, we show that if Z ⊆ Y ⊆ X where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y is an M-ideal in X then Z is stro...
متن کاملProximinality in Geodesic Spaces
Let X be a complete CAT(0) space with the geodesic extension property and Alexandrov curvature bounded below. It is shown that if C is a closed subset of X , then the set of points of X which have a unique nearest point in C is Gδ and of the second Baire category inX. If, in addition,C is bounded, then the set of points ofX which have a unique farthest point in C is dense in X. A proximity resu...
متن کاملStrong Proximinality and Renormings
We characterize finite-dimensional normed linear spaces as strongly proximinal subspaces in all their superspaces. A connection between upper Hausdorff semi-continuity of metric projection and finite dimensionality of subspace is given.
متن کاملSimultaneous greedy approximation in Banach spaces
We study nonlinear m-term approximation with regard to a redundant dictionary D in a Banach space. It is known that in the case of Hilbert space H the pure greedy algorithm (or, more generally, the weak greedy algorithm) provides for each f ∈ H and any dictionaryD an expansion into a series f = ∞ ∑ j=1 cj (f ) j (f ), j (f ) ∈ D, j = 1, 2, . . . with the Parseval property: ‖f ‖2 = ∑j |cj (f )|2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2017
ISSN: 1300-0098,1303-6149
DOI: 10.3906/mat-1604-20