SINGINT: Automatic numerical integration of singular integrands

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SINGINT: Automatic numerical integration of singular integrands

We explore the combination of deterministic and Monte Carlo methods to facilitate efficient automatic numerical computation of multidimensional integrals with singular integrands. Two adaptive algorithms are presented that employ recursion and are runtime and memory optimised, respectively. SINGINT, a C implementation of the algorithms, is introduced and its utilisation in the calculation of pa...

متن کامل

Numerical Evaluation of Cauchy Principal Value Integrals with Singular Integrands

Convergence results are proved for sequences of interpolatory integration rules for Cauchy principal value integrals of the form -l k(x)(f(x)/(x-X))dx, -1<A<1, -i when f(x) is singular at a point { / À and the singularity is ignored or avoided. /:'

متن کامل

Numerical integration over smooth surfaces in R3 via class Sm variable transformations. Part II: Singular integrands

Class Sm variable transformations with integer m for finite-range integrals were introduced by the author about a decade ago. These transformations ‘‘periodize’’ the integrand functions in a way that enables the trapezoidal rule to achieve very high accuracy, especially with even m. In a recent work by the author, these transformations were extended to arbitrary real m, and their role in improv...

متن کامل

DRAFT: Numerical Integration for Oscillatory Integrands: a Computer Algebra Perspective

How can a computer algebra system (CAS) help in getting a good numerical approximation to an oscillatory quadrature problem? Our assumption here is that we are primarily interested in the rapid and accurate numerical estimation of an integral, and that, even though we are using a CAS, an exact expression cannot be obtained for theoretical or practical reasons.

متن کامل

Rates of Convergence of Gauss, Lobatto, and Radau Integration Rules for Singular Integrands

Rates of convergence (or divergence) are obtained in the application of Gauss, Lobatto, and Radau integration rules to functions with an algebraic or logarithmic singularity inside, or at an endpoint of, the interval of integration. A typical result is the following: For a generalized Jacobi weight function on [-1,1], the error in applying an «-point rule to f(x) = \x -y\~* isO(n~2 + 2i), if y ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 2003

ISSN: 0010-4655

DOI: 10.1016/s0010-4655(03)00160-7