Skin Lesion Classification Using CNNs With Patch-Based Attention and Diagnosis-Guided Loss Weighting
نویسندگان
چکیده
منابع مشابه
Relation Classification via Multi-Level Attention CNNs
Relation classification is a crucial ingredient in numerous information extraction systems seeking to mine structured facts from text. We propose a novel convolutional neural network architecture for this task, relying on two levels of attention in order to better discern patterns in heterogeneous contexts. This architecture enables endto-end learning from task-specific labeled data, forgoing t...
متن کاملSkin Lesion Classification using Class Activation Map
We proposed a two stage framework with only one network to analyze skin lesion images, we firstly trained a convolutional network to classify these images, and cropped the import regions which the network has the maximum activation value. In the second stage, we retrained this CNN with the image regions extracted from stage one and output the final probabilities. The two stage framework achieve...
متن کاملPatch-Based Image Classification Using Image Epitomes
Automatic image classification has many practical applications, including photo collection organization and image search. In this project I approach the image classification task through the use of image epitomes. The epitome of an image is a probabilistic model that serves as a compact representation of the shape and texture information present in the original image. I first create a collage o...
متن کاملSkin lesion classification using oblique-incidence diffuse reflectance spectroscopic imaging.
We discuss the use of a noninvasive in vivo optical technique, diffuse reflectance spectroscopic imaging with oblique incidence, to distinguish between benign and cancer-prone skin lesions. Various image features were examined to classify the images from lesions into benign and cancerous categories. Two groups of lesions were processed separately: Group 1 includes keratoses, warts versus carcin...
متن کاملSkin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks
Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Biomedical Engineering
سال: 2020
ISSN: 0018-9294,1558-2531
DOI: 10.1109/tbme.2019.2915839