Small solutions of congruences over algebraic number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Varieties over Small Fields

— We study curves and their Jacobians over F̄p and Q̄, and discuss applications to rational connectivity over these fields. We introduce certain dynamical systems on P, induced by translates by torsion points on elliptic curves, and study fields related to these systems.

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

Factoring Multivariate Polynomials over Algebraic Number Fields

The algorithm for factoring polynomials over the integers by Wang and Rothschild is generalized to an algorithm for the irreducible factorization of multivariate polynomials over any given algebraic number field. The extended method makes use of recent ideas in factoring univariate polynomials over large finite fields due to Berlekamp and Zassenhaus. The procedure described has been implemented...

متن کامل

Small Solutions of Polynomial Congruences

Let p be prime and q|p − 1. Suppose xq ≡ a(mod p) has a solution. We estimate the size of the smallest solution x0 with 0 < x0 < p. We prove that |x0| p3/2q−1 log p. By applying the Burgess character sum estimates, and estimates of certain exponential sums due to Bourgain, Glibichuk and Konyagin, we derive refinements of our result.

متن کامل

Geometric representation of interval exchange maps over algebraic number fields

This paper is concerned with the restriction of interval exchange transformations (IETs) to algebraic number fields, which leads to maps on lattices. We characterize renormalizability arithmetically, and study its relationships with a geometrical quantity that we call the drift vector. We exhibit some examples of renormalizable IETs with zero and non-zero drift vector and carry out some investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 1987

ISSN: 0019-2082

DOI: 10.1215/ijm/1256063573