Smarandache Rings and Smarandache Elements
نویسندگان
چکیده
منابع مشابه
On Smarandache Rings II
In this paper we show that a commutative semisimple ring is always a Smarandache ring. We will also give a necessary and sufficient condition for group algebra to be a Smarandache ring. Examples are provided for justification.
متن کاملSmarandache Idempotents in Loop Rings
In this paper we establish the existance of S-idempotents in case of loop rings ZtLn(m) for a special class of loops Ln(m); over the ring of modulo integers Zt for a specific value of t.These loops satisfy the conditions g 2 i = 1 for every gi ∈ Ln(m). We prove ZtLn(m) has an S-idempotent when t is a perfect number or when t is of the form 2p or 3p (where p is an odd prime) or in general when t...
متن کاملSmarandache-Zero Divisors in Group Rings
The study of zero-divisors in group rings had become interesting problem since 1940 with the famous zero-divisor conjecture proposed by G.Higman [2]. Since then several researchers [1, 2, 3] have given partial solutions to this conjecture. Till date the problem remains unsolved. Now we introduce the notions of Smarandache zero divisors (S-zero divisors) and Smarandache week zero divisors (S-wea...
متن کاملSmarandache isotopy of second Smarandache Bol loops
The pair (GH , ·) is called a special loop if (G, ·) is a loop with an arbitrary subloop (H, ·) called its special subloop. A special loop (GH , ·) is called a second Smarandache Bol loop (S2ndBL) if and only if it obeys the second Smarandache Bol identity (xs · z)s = x(sz · s) for all x, z in G and s in H. The popularly known and well studied class of loops called Bol loops fall into this clas...
متن کاملOn Smarandache Algebraic Strucures. Ii:the Smarandache Semigroup
In this paper we prove that A(a,n) is a Smarandache semigroup.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AL-Rafidain Journal of Computer Sciences and Mathematics
سال: 2013
ISSN: 2311-7990
DOI: 10.33899/csmj.2013.163547