Smooth normal forms for integrable Hamiltonian systems near a focus–focus singularity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbital Normal Forms for a family of-zero Singularity

Consider a Dynamical system x'=F(x,µ) such that its linear part has a pair of imaginary eigenvalues and one zero eigenvalue (Hopf zero singularity). Recently, the simplest normal form for this singular system has been obtained by sl(2) Lie algebra theory and the decomposition of space into three invariant subspaces. The normal form of this singular system is divided into three general cases. In...

متن کامل

Parabolic resonances in near integrable Hamiltonian systems

When an integrable Hamiltonian system, possessing an m-resonant lower dimensional normally parabolic torus is perturbed, a parabolic m-resonance occurs. If, in addition, the isoenergetic nondegeneracy condition for the integrable system fails, the near integrable Hamiltonian exhibits a at parabolic m-resonance. It is established that most kinds of parabolic resonances are persistent in n (n 3) ...

متن کامل

Chaos in a Near-integrable Hamiltonian Lattice

We study the chaotic dynamics of a near-integrable Hamiltonian Ablowitz–Ladik lattice, which is N+2-dimensional if N is even (N+1, if N is odd) and possesses, for all N , a circle of unstable equilibria at ε = 0, whose homoclinic orbits are shown to persist for ε 6= 0 on whiskered tori. The persistence of homoclinic orbits is established through Mel’nikov conditions, directly from the Hamiltoni...

متن کامل

Parabolic Resonances in near Integrable Hamiltonian Systems I Introduction

When an integrable Hamiltonian system, possessing an m-resonant lower dimensional normally parabolic torus is perturbed, a parabolic m-resonance occurs. If, in addition, the iso-energetic non-degeneracy condition for the integrable system fails, the near integrable Hamiltonian exhibits a at parabolic m-resonance. It is established that most kinds of parabolic resonances are persistent in n (n 3...

متن کامل

Stability of Motions near Resonances in Quasi-Integrable Hamiltonian Systems

Nekhoroshev's theorem on the stability of motions in quasi-integrable Hamiltonian systems is revisited. At variance with the proofs already available in the literature, we explicitly consider the case of weakly perturbed harmonic oscillators; furthermore we prove the confinement of orbits in resonant regions, in the general case of nonisochronous systems, by using the elementary idea of energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Vietnamica

سال: 2013

ISSN: 0251-4184,2315-4144

DOI: 10.1007/s40306-013-0012-5