Smooth polynomial approximation of spiral arcs
نویسندگان
چکیده
منابع مشابه
Approximation of circular arcs by parametric polynomial curves
In this paper the approximation of circular arcs by parametric polynomial curves is studied. If the angular length of the circular arc is h, a parametric polynomial curve of arbitrary degree n ∈ N, which interpolates given arc at a particular point, can be constructed with radial distance bounded by h2n. This is a generalization of the result obtained by Lyche and Mørken for odd n.
متن کاملPolynomial Approximation
Polynomials are very simple mathematical functions which have the flexibility to represent very general nonlinear relationships. Approximation of more complicated functions by polynomials is a basic building block for many numerical techniques. This article considers two distinct but related applications. The first is polynomial regression in which polynomials are used to model a nonlinear rela...
متن کاملPolynomial Approximation of Functions
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...
متن کاملSpiral fat arcs - Bounding regions with cubic convergence
A bounding region for spiral curve segments shaped by two circular arcs, parts of the osculating circles at the spiral’s endpoints, and two lines is introduced. This bounding region, denoted Spiral Fat Arc (SFA) is simple to construct and process, and shows a cubic approximation order to a given spiral curve. Given a general planar parametric curve, it can be split at curvature extrema (and inf...
متن کاملPolynomial-Time Approximation Schemes
We present the first polynomial-time approximation schemes (PTASes) for the following subset-connectivity problems in edge-weighted graphs of bounded genus: Steiner tree, low-connectivity survivable-network design, and subset TSP. The schemes run in O(n log n) time for graphs embedded on both orientable and nonorientable surfaces. This work generalizes the PTAS frameworks of Borradaile, Klein, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2009.10.008