SMOTE for high-dimensional class-imbalanced data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class-imbalanced classifiers for high-dimensional data

A class-imbalanced classifier is a decision rule to predict the class membership of new samples from an available data set where the class sizes differ considerably. When the class sizes are very different, most standard classification algorithms may favor the larger (majority) class resulting in poor accuracy in the minority class prediction. A class-imbalanced classifier typically modifies a ...

متن کامل

Software Defect Prediction for High-Dimensional and Class-Imbalanced Data

Software quality and reliability can be improved using various techniques during the software development process. One effective method is to utilize software metrics and defect data collected during the software development life cycle and build defect predictors using data mining techniques to estimate the quality of target program modules. Such a strategy allows practitioners to intelligently...

متن کامل

Conversion of Imbalanced Data Into A Stream Using SMOTE Algorithm

Machine learning approach has got major importance when distribution of data is unknown. Classification of data from the data set causes some problem when distribution of data is unknown. Characterization of raw data relates to whether the data can take on only discrete values or whether the data is continuous. In real world application data drawn from non-stationary distribution, causes the pr...

متن کامل

Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines

Feature selection and classification of imbalanced data sets are two of the most interesting machine learning challenges, attracting a growing attention from both, industry and academia. Feature selection addresses the dimensionality reduction problem by determining a subset of available features to build a good model for classification or prediction, while the class-imbalance problem arises wh...

متن کامل

Possible explanation on the effect of variable selection on PAM used with SMOTE In our simulation studies with high-dimensional class-imbalanced data

In our simulation studies with high-dimensional class-imbalanced data we observed that under the null case SMOTE had hardly any effect on classification with PAM, when all the p = 1000 simulated variables where considered. On the other hand, if only a subset of the variables was used (G = 40), SMOTE seemed beneficial in reducing the class-imbalance problem of PAM, decreasing the number of sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Bioinformatics

سال: 2013

ISSN: 1471-2105

DOI: 10.1186/1471-2105-14-106