SOBOLEV INEQUALITIES FOR ORLICZ SPACES OF TWO VARIABLE EXPONENTS
نویسندگان
چکیده
منابع مشابه
Traces for Fractional Sobolev Spaces with Variable Exponents
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p : Ω × Ω → (1,∞) and q : ∂Ω→ (1,∞) are continuous functions such that (n− 1)p(x, x) n− sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n− sp(x, x) > 0}, then the inequality ‖f‖Lq(·)(∂Ω) ≤ C { ‖f‖Lp̄(·)(Ω) + [f ]s,p(·,·) } holds. Here p̄(x) = p(x, x) and [f ]s,p(·,·) denotes the fractional semi...
متن کاملOptimal Domain Spaces in Orlicz-sobolev Embeddings
We deal with Orlicz-Sobolev embeddings in open subsets of R. A necessary and sufficient condition is established for the existence of an optimal, i.e. largest possible, Orlicz-Sobolev space continuously embedded into a given Orlicz space. Moreover, the optimal Orlicz-Sobolev space is exhibited whenever it exists. Parallel questions are addressed for Orlicz-Sobolev embeddings into Orlicz spaces ...
متن کاملKorn Inequalities In Orlicz Spaces
We use gradient estimates for solutions of elliptic equations to obtain Korn’s inequality for fields with zero trace from Orlicz–Sobolev classes. As outlined for example in the monographs of Málek, Nečas, Rokyta, Růžička [MNRR], of Duvaut and Lions [DL] and of Zeidler [Ze], the well-posedness of many variational problems arising in fluid mechanics or in the mechanics of solids heavily depends o...
متن کاملPoincaré–type Inequalities for Broken Sobolev Spaces
We present two versions of general Poincaré–type inequalities for functions in broken Sobolev spaces, providing bounds for the Lq–norm of a function in terms of its broken H1–norm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2009
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089509990292