Software Effort Prediction Using Ensemble Learning Methods
نویسندگان
چکیده
منابع مشابه
Software Effort Prediction using Statistical and Machine Learning Methods
Accurate software effort estimation is an important part of software process. Effort is measured in terms of person months and duration. Both overestimation and underestimation of software effort may lead to risky consequences. Also, software project managers have to make estimates of how much a software development is going to cost. The dominant cost for any software is the cost of calculating...
متن کاملSoftware Defect Prediction Using Ensemble Learning Survey
Machine learning is a science that explores the building and study of algorithms that can learn from the data. Machine learning process is the union of statistics and artificial intelligence and is closely related to computational statistics. Machine learning takes decisions based on the qualities of the studied data using statistics and adding more advanced artificial intelligence heuristics a...
متن کاملAn Effort Estimation Model for Software Development using Ensemble Learning
For a successful project development, it is important for any software organization that the project should be completed within time and budget, and the project should have requisite quality. This paper presents an Ensemble learning based Adaptive Neuro-Fuzzy Approach for Software Development Time Estimation. The concept behind this technique is based on ensemble learning methods. This techniqu...
متن کاملEnsemble missing data techniques for software effort prediction
Constructing an accurate effort prediction model is a challenge in software engineering. The development and validation of models that are used for prediction tasks require good quality data. Unfortunately, software engineering datasets tend to suffer from the incompleteness which could result to inaccurate decision making and project management and implementation. Recently, the use of machine ...
متن کاملOptimal Spatial Prediction Using Ensemble Machine Learning.
Spatial prediction is an important problem in many scientific disciplines. Super Learner is an ensemble prediction approach related to stacked generalization that uses cross-validation to search for the optimal predictor amongst all convex combinations of a heterogeneous candidate set. It has been applied to non-spatial data, where theoretical results demonstrate it will perform asymptotically ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Software Engineering and Applications
سال: 2020
ISSN: 1945-3116,1945-3124
DOI: 10.4236/jsea.2020.137010