Solitary wave fission and fusion in the (2+1)-dimensional generalized Broer–Kaup system
نویسندگان
چکیده
منابع مشابه
Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملSolitons with Fusion and Fission Properties in the (2+1)-Dimensional Modified Dispersive Water-Wave System
In this paper, by means of the general projective Riccati equation method (PREM), the variable separation solutions of the (2+1)-dimensional modified dispersive water-wave system are obtained. By further studying, we find that these variable separation solutions, which seem independent, actually depend on each other. Based on the special variable separation solution and choosing suitable functi...
متن کاملSolitary Waves in Nonlinear Beam Equations: Stability, Fission and Fusion
We continue work by the second author and co-workers on solitary wave solutions of nonlinear beam equations and their stability and interaction properties. The equations are partial differential equations that are fourth-order in space and second-order in time. First, we highlight similarities between the intricate structure of solitary wave solutions for two different nonlinearities; a piecewi...
متن کاملSolitary Wave solutions of the BK equation and ALWW system by using the first integral method
Solitary wave solutions to the Broer-Kaup equations and approximate long water wave equations are considered challenging by using the rst integral method.The exact solutions obtained during the present investigation are new. This method can be applied to nonintegrable equations as well as to integrable ones.
متن کاملcomplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
in this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. the traveling wave hypothesis yields complexiton solutions. subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. the constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Modelling and Control
سال: 2012
ISSN: 2335-8963,1392-5113
DOI: 10.15388/na.17.3.14055