Soliton solutions of KD system using similarity transformations method
نویسندگان
چکیده
منابع مشابه
He’s semi-inverse method for soliton solutions of Boussinesq system
In this paper, we apply He’s semi-inverse method to establish a variational theory for the Boussinesq system. Based on this formulation, a solitary solution can be easily obtained using Ritz method. Moreover, the results are also compared with He’s homotopy perturbation method, Liao’s homotopy analysis method and homotopy padémethod. The results reveal that the proposed method is very effective...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Some traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملSoliton and Similarity Solutions of Ν = 2, 4 Supersymmetric Equations
We produce soliton and similarity solutions of supersymmetric extensions of Burgers, Korteweg–de Vries and modified KdV equations. We give new representations of the τ -functions in Hirota bilinear formalism. Chiral superfields are used to obtain such solutions. We also introduce new solitons called virtual solitons whose nonlinear interactions produce no phase shifts.
متن کاملHirota’s bilinear method and soliton solutions
In this lecture we will first discuss integrability in general, its meaning and significance, and then make some general observations about solitons. We will then introduce Hirota’s bilinear method, which is particularly useful in constructing multisoliton solutions for integrable nonlinear evolution equations. 1 Why is integrability important? In very general terms integrability means regulari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2017
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2016.12.025