Solutions for infinite-matrix differential equations
نویسندگان
چکیده
منابع مشابه
Existence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملexistence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay
...
متن کاملUsing operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملEfficient Solutions of Coupled Matrix and Matrix Differential Equations
In Kronecker products works, matrices are some times regarded as vectors and vectors are some times made in to matrices. To be precise about these reshaping we use the vector and diagonal extraction operators. In the present paper, the results are organized in the following ways. First, we formulate the coupled matrix linear least-squares problem and present the efficient solutions of this prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1973
ISSN: 0022-247X
DOI: 10.1016/0022-247x(73)90212-6