Solvable normal subgroups of 2-knot groups
نویسندگان
چکیده
منابع مشابه
Classifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
متن کاملA-Generated Subgroups of A-Solvable Groups
In the discussion of A-solvable groups, the question arises if a torsion-free abelian group A of finite rank is flat as a module over its endomorphism ring if every A-generated subgroup of a torsion-free A-solvable group is A-solvable. This paper gives a negative answer by constructing a torsion-free group of rank 3 for which all A-generated torsion-free groups are A-solvable, although A is not...
متن کاملSuperrigid Subgroups of Solvable Lie Groups
Let Γ be a discrete subgroup of a simply connected, solvable Lie group G, such that AdG Γ has the same Zariski closure as AdG. If α : Γ → GLn(R) is any finite-dimensional representation of Γ, we show that α virtually extends to a continuous representation σ of G. Furthermore, the image of σ is contained in the Zariski closure of the image of α. When Γ is not discrete, the same conclusions are t...
متن کاملSeparability of Solvable Subgroups in Linear Groups
Let Γ be a finitely generated linear group over a field of characteristic 0. Suppose that every solvable subgroup of Γ is polycyclic. Then any solvable subgroup of Γ is separable. This conclusion is false without the hypothesis that every solvable subgroup of Γ is polycyclic.
متن کاملNilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Knot Theory and Its Ramifications
سال: 2017
ISSN: 0218-2165,1793-6527
DOI: 10.1142/s0218216517500663