Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo
نویسندگان
چکیده
منابع مشابه
Riemann Manifold Langevin and Hamiltonian Monte Carlo
This paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs required to tu...
متن کاملRiemann manifold Langevin and Hamiltonian Monte Carlo methods
The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are requir...
متن کاملAdaptive Hamiltonian and Riemann Manifold Monte Carlo Samplers
In this paper we address the widelyexperienced difficulty in tuning Monte Carlo sampler based on simulating Hamiltonian dynamics. We develop an algorithm that allows for the adaptation of Hamiltonian and Riemann manifold Hamiltonian Monte Carlo samplers using Bayesian optimization that allows for infinite adaptation of the parameters of these samplers. We show that the resulting samplers are er...
متن کاملRiemannian Manifold Hamiltonian Monte Carlo
The paper proposes a Riemannian Manifold Hamiltonian Monte Carlo sampler to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The method provides a fully automated adaptation mechanism that circumvents the costly pilot runs required to tune proposal densities for Metropolis-Hastings or in...
متن کاملA Quasi Monte Carlo Method for Large-Scale Inverse Problems
We consider large-scale linear inverse problems with a simulation-based algorithm that approximates the solution within a low-dimensional subspace. The algorithm uses Tikhonov regularization, regression, and low-dimensional linear algebra calculations and storage. For sampling efficiency, we implement importance sampling schemes, specially tailored to the structure of inverse problems. We empha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2014
ISSN: 0266-5611,1361-6420
DOI: 10.1088/0266-5611/30/11/114014