Solving linear systems over idempotent semifields through LU-factorization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Lattices of Reducible Matrices over Completed Idempotent Semifields

Previous work has shown a relation between L-valued extensions of FCA and the spectra of some matrices related to L-valued contexts. We investigate the spectra of reducible matrices over completed idempotent semifields in the framework of dioids, naturally-ordered semirings, that encompass several of those extensions. Considering special sets of eigenvectors also brings out complete lattices in...

متن کامل

Solving linear systems with vectorized WZ factorization

Abstract In the paper we present a vectorized algorithm for WZ factorization of a matrix which was implemented with the BLAS1 library. We present the results of numerical experiments which show that vectorization accelerates the sequential WZ factorization. Next, we parallelized both algorithms for a two-processor shared memory machine using the OpenMP standard. We present performances of these...

متن کامل

LU-Decomposition with Iterative Refinement for Solving Sparse Linear Systems

In the solution of a system of linear algebraic equations Ax = b with a large sparse coefficient matrix A, the LU-decomposition with iterative refinement (LUIR) is compared with the LU-decomposition with direct solution (LUDS), which is without iterative refinement. We verify by numerical experiments that the use of sparse matrix techniques with LUIR may result in a reduction of both the comput...

متن کامل

Avoiding Communication through a Multilevel LU Factorization

Due to the evolution of massively parallel computers towards deeper levels of parallelism and memory hierarchy, and due to the exponentially increasing ratio of the time required to transfer data, either through the memory hierarchy or between different compute units, to the time required to compute floating point operations, the algorithms are confronted with two challenges. They need not only...

متن کامل

Random matrix over a DVR and LU factorization

LetR be a discrete valuation ring (DVR) andK be its fraction field. IfM is a matrix overR admitting a LU decomposition, it could happen that the entries of the factors L and U do not lie in R, but just inK. Having a good control on the valuations of these entries is very important for algorithmic applications. In the paper, we prove that in average these valuations are not too large and explain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rendiconti del Circolo Matematico di Palermo Series 2

سال: 2020

ISSN: 0009-725X,1973-4409

DOI: 10.1007/s12215-020-00529-y