Solving Lorenz System by Using Lower Order Symmetrized Runge-Kutta Methods

نویسندگان

چکیده

Runge-Kutta is a widely used numerical method for solving the non-linear Lorenz system. This study focuses on equations with classical parameter values by using lower order symmetrized methods, Implicit Midpoint Rule (IMR), and Trapezoidal (ITR). We show construction of symmetrical present experiments based two methods without symmetrization, one- two-step active symmetrization in constant step size setting. For our experiments, we use MATLAB software to solve plot graphical solutions compare oscillatory behaviour it appears that IMR turn out be chaotic while rest non-chaotic. also accuracy efficiency result shows performs better than symmetrizers, ITR one-step ITR. Based results, conclude different implicit steps can significantly impact Since most system explicit time schemes, hope this motivate other researchers analyze further schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Order Runge { Kutta Methods on Manifolds

This paper presents a family of Runge{Kutta type integration schemes of arbitrarily high order for di erential equations evolving on manifolds. We prove that any classical Runge{Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement.

متن کامل

High Order Multisymplectic Runge-Kutta Methods

We study the spatial semidiscretizations obtained by applying Runge–Kutta (RK) and partitioned Runge–Kutta (PRK) methods to multisymplectic Hamiltonian partial differential equations. These methods can be regarded as multisymplectic hp-finite element methods for wave equations. All the methods we consider are multisymplectic; we determine their properties with regard to existence of solutions, ...

متن کامل

Runge - Kutta Methods page RK 1 Runge - Kutta Methods

Literature For a great deal of information on Runge-Kutta methods consult J.C. Butcher, Numerical Methods for Ordinary Differential Equations, second edition, Wiley and Sons, 2008, ISBN 9780470723357. That book also has a good introduction to linear multistep methods. In these notes we refer to this books simply as Butcher. The notes were written independently of the book which accounts for som...

متن کامل

Accelerated Runge-Kutta Methods

Standard Runge-Kutta methods are explicit, one-step, and generally constant step-size numerical integrators for the solution of initial value problems. Such integration schemes of orders 3, 4, and 5 require 3, 4, and 6 function evaluations per time step of integration, respectively. In this paper, we propose a set of simple, explicit, and constant step-size Accerelated-Runge-Kutta methods that ...

متن کامل

Optimum Runge-Kutta Methods

The optimum Runge-Kutta method of a particular order is the one whose truncation error is a minimum. Various measures of the size of the truncation error are considered. The optimum method is practically independent of the measure being used. Moreover, among methods of the same order which one might consider using the difference in size of the estimated error is not more than a factor of 2 or 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics and Statistics

سال: 2022

ISSN: ['2332-2144', '2332-2071']

DOI: https://doi.org/10.13189/ms.2022.100402