Some hard numbers on science’s leadership problems
نویسندگان
چکیده
منابع مشابه
On Some Hard Problems on Matroid Spikes
Spikes form an interesting class of 3-connected matroids of branch-width 3. We show that some computational problems are hard on spikes with given matrix representations over infinite fields. Namely, the question whether a given spike is the free spike is co-NP -hard (though the property itself is definable in monadic second-order logic); and the task to compute the Tutte polynomial of a spike ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Some hard families of parameterised counting problems
We consider parameterised subgraph-counting problems of the following form: given a graph G, how many k-tuples of its vertices have a given property? A number of such problems are known to be #W[1]complete; here we substantially generalise some of these existing results by proving hardness for two large families of such problems. We demonstrate that it is #W[1]-hard to count the number of k-ver...
متن کاملSome Conditionally Hard Problems on Links and 3-Manifolds
Many decision problems in the theory of knots, links and 3-manifolds are known to be solvable. For example, the equivalence problem for links in the 3-sphere was solved by Haken [12], Hemion [15] and Matveev [21]. Following the work of many mathematicians, including the proof of the the Geometrisation Conjecture by Perelman [23, 24, 25], the homeomorphism problem for compact orientable 3-manifo...
متن کاملCrossing Numbers and Hard Erdös Problems in Discrete Geometry
We show that an old but not well-known lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry which were considered hard before: the number of incidences among points and lines, the maximum number of unit distances among n points, the minimum number of distinct distances among n points. " A statement about curves is not interesting u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2018
ISSN: 0028-0836,1476-4687
DOI: 10.1038/d41586-018-05143-8