Some inequalities for the eigenvalues of the product of positive semidefinite Hermitian matrices
نویسندگان
چکیده
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولInequalities Involving Khatri-rao Products of Positive Semidefinite Hermitian Matrices
In this paper, we obtain some matrix inequalities in Löwner partial ordering for Khatri-Rao products of positive semidefinite Hermitian matrices. Furthermore, we generalize the Oppenheim’s inequality, with which we will improve some recent results.
متن کاملsingular value inequalities for positive semidefinite matrices
in this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl. 308 (2000) 203-211] and [linear algebra appl. 428 (2008) 2177-2191].
متن کاملSome New Inequalities for Eigenvalues of the Hadamard Product and the Fan Product of Matrices
Let A and B be nonnegative matrices. A new upper bound on the spectral radius ρ(A◦B) is obtained. Meanwhile, a new lower bound on the smallest eigenvalue q(A B) for the Fan product, and a new lower bound on the minimum eigenvalue q(B ◦A−1) for the Hadamard product of B and A−1 of two nonsingular M -matrices A and B are given. Some results of comparison are also given in theory. To illustrate ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1992
ISSN: 0024-3795
DOI: 10.1016/0024-3795(92)90442-d