Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators
نویسندگان
چکیده
In this study, we present new variants of the Hermite–Hadamard inequality via non-conformable fractional integrals. These inequalities are proven for convex functions and differentiable whose derivatives in absolute value generally convex. Our main results established using classical Jensen–Mercer its (h,m)-convex modified paper. addition to showing that our support previously known from literature, provide examples their application.
منابع مشابه
Generalized Hermite-Hadamard type inequalities involving fractional integral operators
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کاملOn Some New Fractional Type Heinz Inequalities
The authors shall discuss Heinz inequalities involving Riemann-Liouville fractional integrals for certain unitarily invariant norms. By using the convexity of function and fractional Hermit-Hadamard integral inequality, some refinements of Heinz inequalities are derived.
متن کاملSome Fractional Integral Inequalities in Quantum Calculus
In this paper, using the Riemann-Liouville fractional q-integral, we establish some new fractional integral inequalities by using two parameters of deformation q1 and q2.
متن کاملSome Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12060517