Some notes on differentiable manifolds with almost contact structures
نویسندگان
چکیده
منابع مشابه
Lecture Notes on Differentiable Manifolds
1. Tangent Spaces, Vector Fields in R and the Inverse Mapping Theorem 1 1.1. Tangent Space to a Level Surface 1 1.2. Tangent Space and Vectors Fields on R 2 1.3. Operator Representations of Vector Fields 3 1.4. Integral Curves 4 1.5. Implicitand Inverse-Mapping Theorems 5 2. Topological and Differentiable Manifolds 9 3. Diffeomorphisms, Immersions, Submersions and Submanifolds 9 4. Fibre Bundle...
متن کاملNotes on some classes of 3-dimensional contact metric manifolds
A review of the geometry of 3-dimensional contact metric manifolds shows that generalized Sasakian manifolds and η-Einstein manifolds are deeply interrelated. For example, it is known that a 3-dimensional Sasakian manifold is η-Einstein. In this paper, we discuss the relationships between several special classes of 3-dimensional contact metric manifolds which are generalizations of 3-dimensiona...
متن کاملContact Structures on 5–manifolds
Using recent work on high dimensional Lutz twists and families of Weinstein structures we show that any almost contact structure on a 5–manifold is homotopic to a contact structure.
متن کاملDIFFERENTIABLE STRUCTURES 1. Classification of Manifolds
(1) Classify all spaces ludicrously impossible. (2) Classify manifolds only provably impossible (because any finitely presented group is the fundamental group of a 4-manifold, and finitely presented groups are not able to be classified). (3) Classify manifolds with a given homotopy type (sort of worked out in 1960’s by Wall and Browder if π1 = 0. There is something called the Browder-Novikov-Su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1963
ISSN: 0040-8735
DOI: 10.2748/tmj/1178243844