Some Problems of Convergence of General Fourier Series

نویسندگان

چکیده

Banach [1] proved that good differential properties of function do not guarantee the a.e. convergence Fourier series this with respect to general orthonormal systems (ONS). On other hand it is very well known a sufficient condition for an given by Menshov–Rademacher Theorem. The paper deals sequence positive numbers $$(d_{n})$$ such multiplying coefficients $$(C_{n}(f))$$ functions bounded variation these one obtains convergent form $$\sum_{n=1}^{\infty}d_{n}C_{n}(f)\varphi_{n}(x).$$ It established resulting conditions are best possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Fourier Series

The purpose of this paper is to explore the basic question of the convergence of Fourier series. This paper will not delve into the deeper questions of convergence that measure theory illuminates, but requires only the basic principles set out by introductory real and complex analysis.

متن کامل

Convergence of Random Fourier Series

This paper will study Fourier Series with random coefficients. We begin with an introduction to Fourier series on the torus and give some of the most important results. We then give some important results from probability theory, and build on these to prove a variety of theorems that deal with the convergence or divergence of general random series. In the final section, the focus is placed on r...

متن کامل

Pointwise convergence of Fourier series

In the early 19 century, J. Fourier was an impassioned advocate of the use of such sums, of course writing sines and cosines rather than complex exponentials. Euler, the Bernouillis, and others had used such sums in similar fashions and for similar ends, but Fourier made a claim extravagant for the time, namely that all functions could be expressed in such terms. Unfortunately, in those days th...

متن کامل

Convergence of Trigonometric and Walsh - Fourier Series

In this paper we present some results on convergence and summability of oneand multi-dimensional trigonometric andWalsh-Fourier series. The Fejér and Cesàro summability methods are investigated. We will prove that the maximal operator of the summability means is bounded from the corresponding classical or martingale Hardy space Hp to Lp for some p > p0. For p = 1 we obtain a weak type inequalit...

متن کامل

L1-convergence of complex double Fourier series

It is proved that the complex double Fourier series of an integrable function f (x,y) with coefficients {c jk} satisfying certain conditions, will converge in L 1norm. The conditions used here are the combinations of Tauberian condition of Hardy– Karamata kind and its limiting case. This paper extends the result of Bray [1] to complex double Fourier series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Contemporary Mathematical Analysis

سال: 2022

ISSN: ['1934-9416', '1068-3623']

DOI: https://doi.org/10.3103/s1068362322060085