Some recursions on Arnoldi's method and IOM for large non-Hermitian linear systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems

Comparing the lopsided Hermitian/skew-Hermitian splitting (LHSS) method and Hermitian/skewHermitian splitting (HSS) method, a new criterion for choosing the above two methods is presented, which is better than that of Li, Huang and Liu [Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems, Numer. Lin. Alg. Appl., 14 (2007): 217-235]. Key-Word...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

Arnoldi-Faber method for large non hermitian eigenvalue problems

We propose a restarted Arnoldi’s method with Faber polynomials and discuss its use for computing the rightmost eigenvalues of large non hermitian matrices. We illustrate, with the help of some practical test problems, the benefit obtained from the Faber acceleration by comparing this method with the Chebyshev based acceleration. A comparison with the implicitly restarted Arnoldi method is also ...

متن کامل

Lanczos-type Solvers for Non-hermitian Linear Systems

In this overview we discuss iterative methods for solving large linear systems with sparse (or, possibly, structured) nonsymmetric (or, non-Hermitian) matrix that are based on the Lanczos process. They feature short recurrences for the generation of the Krylov space and for the sequence of approximations to the solution. This means low cost and low memory requirement. For very large sparse non-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2000

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(99)00338-7