SPA-GAN: SAR Parametric Autofocusing Method with Generative Adversarial Network
نویسندگان
چکیده
Traditional synthetic aperture radar (SAR) autofocusing methods are based on the point-scattering model, which assumes scattering phases of a target to be constant. However, as for distributed target, especially arc-scattering phase changes with observation angles, i.e., its is time-varying. Hence, compensated mixture time-varying and motion error in traditional methods, causes overfocused point target. To solve problem, this paper, we propose SAR parametric method generative adversarial network (SPA-GAN), establishes framework obtain correct focused image targets. First, analyze reason phenomenon model fundamental established. Then, through estimating parameters from defocused image, SPA-GAN can separate proposed model. Finally, by adopting directly, image. Extensive simulations practical experiments carried out demonstrate effectiveness method.
منابع مشابه
Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN
We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network. We alternately train both classifier and generator networks. The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image. Simultaneously, the classifier network is trained to classify correctly bo...
متن کاملTAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network
In this work, we present the Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. Former approaches have tried to condition the generative process on the textual data; but allying it to the usage of class information, known to diversify the generated samples and ...
متن کاملIVE-GAN: Invariant Encoding Generative Adversarial Networks
Generative adversarial networks (GANs) are a powerful framework for generative tasks. However, they are difficult to train and tend to miss modes of the true data generation process. Although GANs can learn a rich representation of the covered modes of the data in their latent space, the framework misses an inverse mapping from data to this latent space. We propose Invariant Encoding Generative...
متن کاملWasserstein Generative Adversarial Network
Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...
متن کاملControllable Generative Adversarial Network
Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14205159