Space-time error estimates for deep neural network approximations for differential equations
نویسندگان
چکیده
Abstract Over the last few years deep artificial neural networks (ANNs) have very successfully been used in numerical simulations for a wide variety of computational problems including computer vision, image classification, speech recognition, natural language processing, as well advertisement. In addition, it has recently proposed to approximate solutions high-dimensional partial differential equations (PDEs) by means stochastic learning involving ANNs. There are now also rigorous mathematical results scientific literature which provide error estimates such based approximation methods PDEs. All these articles spatial ANN approximations PDEs but do not entire space-time considered approximations. It is subject main result this article Euler certain perturbed equations. Our proof (i) on calculus and (ii) products form $[0,T]\times \mathbb {R}^{d}\ni (t,x){\kern -.5pt}\mapsto {\kern -.5pt} tx{\kern -.5pt}\in {R}^{d}$ [ 0 , T ] × ℝ d ∋ ( t x ) ↦ ∈ where $T{\kern (0,\infty )$ ∞ , $d{\kern {N}$ ℕ we both develop within article.
منابع مشابه
Error Estimates under Minimal Regularity for Single Step Finite Element Approximations of Parabolic Partial Differential Equations
This paper studies error estimations for a fully discrete, single step finite element scheme for linear parabolic partial differential equations. Convergence in the norm of the solution space is shown and various error estimates in this norm are derived. In contrast to like results in the extant literature, the error estimates are derived in a stronger norm and under minimal regularity assumpti...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A posteriori estimates for approximations of time-dependent Stokes equations
In this paper, we derive a posteriori error estimates for space-discrete approximations of the timedependent Stokes equations. By using an appropriate Stokes reconstruction operator, we are able to write an auxiliary error equation, in pointwise form, that satisfies the exact divergence-free condition. Thus, standard energy estimates from partial differential equation theory can be applied dire...
متن کاملDeep Relaxation: partial differential equations for optimizing deep neural networks
We establish connections between non-convex optimization methods for training deep neural networks (DNNs) and the theory of partial differential equations (PDEs). In particular, we focus on relaxation techniques initially developed in statistical physics, which we show to be solutions of a nonlinear Hamilton-Jacobi-Bellman equation. We employ the underlying stochastic control problem to analyze...
متن کاملError Estimates for Time Accurate Wavelet Based Schemes for Hyperbolic Partial Differential Equations
In this study, we derive error estimates for time accurate wavelet based schemes in two stages. First we look at the semi-discrete boundary value problem as a Cauchy problem and use spectral decomposition of self adjoint operators to arrive at the temporal error estimates both in L2 and energy norms. Later, following the wavelet approximation theory, we propose spatial error estimates in L2 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Computational Mathematics
سال: 2023
ISSN: ['1019-7168', '1572-9044']
DOI: https://doi.org/10.1007/s10444-022-09970-2