Sparse density estimator with tunable kernels
نویسندگان
چکیده
منابع مشابه
Sparse density estimator with tunable kernels
A new sparse kernel density estimator with tunable kernels is introduced within a forward constrained regression framework whereby the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive algorithm is developed to select significant kernels one at time, and the kernel width of the selected...
متن کاملTunable GMM Kernels
The recently proposed “generalized min-max” (GMM) kernel [9] can be efficiently linearized, with direct applications in large-scale statistical learning and fast near neighbor search. The linearized GMM kernel was extensively compared in [9] with linearized radial basis function (RBF) kernel. On a large number of classification tasks, the tuning-free GMM kernel performs (surprisingly) well comp...
متن کاملDensity Estimation with Mercer Kernels
We present a new method for density estimation based on Mercer kernels. The density estimate can be understood as the density induced on a data manifold by a mixture of Gaussians fit in a feature space. As is usual, the feature space and data manifold are defined with any suitable positive-definite kernel function. We modify the standard EM algorithm for mixtures of Gaussians to infer the param...
متن کاملNon-Sparse Regularization with Multiple Kernels
Security issues are crucial in a number of machine learning applications, especially in scenarios dealing with human activity rather than natural phenomena (e.g., information ranking, spam detection, malware detection, etc.). It is to be expected in such cases that learning algorithms will have to deal with manipulated data aimed at hampering decision making. Although some previous work address...
متن کاملOnline Sparse Passive Aggressive Learning with Kernels
Conventional online kernel methods often yield an unbounded large number of support vectors, making them inefficient and non-scalable for large-scale applications. Recent studies on bounded kernel-based online learning have attempted to overcome this shortcoming. Although they can bound the number of support vectors at each iteration, most of them fail to bound the number of support vectors for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2016
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2015.08.021