Sparse principal component analysis via regularized low rank matrix approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation

Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loading...

متن کامل

Approximation bounds for sparse principal component analysis

We produce approximation bounds on a semidefinite programming relaxation for sparse principal component analysis. These bounds control approximation ratios for tractable statistics in hypothesis testing problems where data points are sampled from Gaussian models with a single sparse leading component. We study approximation bounds for a semidefinite relaxation of the sparse eigenvalue problem, ...

متن کامل

Regularized Principal Component Analysis ∗

Given a set of signals, a classical construction of an optimal truncatable basis for optimally representing the signals, is the principal component analysis (PCA for short) approach. When the information about the signals one would like to represent is a more general property, like smoothness, a different basis should be considered. One example is the Fourier basis which is optimal for represen...

متن کامل

Sparse Principal Component Analysis via Variable Projection

Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis. We discuss a robust and scalable algorithm for computing sparse principal component analysis. Specifically, we model SPCA as a matrix factorization problem with orthogonality constraints, and develop specialized optimization algorithms that partially minimize a subset of the variables (varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2008

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2007.06.007