Sparse Recovery of Nonnegative Signals With Minimal Expansion
نویسندگان
چکیده
منابع مشابه
Sparse Recovery of Positive Signals with Minimal Expansion
We investigate the sparse recovery problem of reconstructing a high-dimensional non-negative sparse vector from lower dimensional linear measurements. While much work has focused on dense measurement matrices, sparse measurement schemes are crucial in applications, such as DNA microarrays and sensor networks, where dense measurements are not practically feasible. One possible construction uses ...
متن کاملSupport Recovery of Sparse Signals
We consider the problem of exact support recovery of sparse signals via noisy measurements. The main focus is the sufficient and necessary conditions on the number of measurements for support recovery to be reliable. By drawing an analogy between the problem of support recovery and the problem of channel coding over the Gaussian multiple access channel, and exploiting mathematical tools develop...
متن کاملSparse Recovery of Fusion Frame Structured Signals
Fusion frames are collection of subspaces which provide a redundant representation of signal spaces. They generalize classical frames by replacing frame vectors with frame subspaces. This paper considers the sparse recovery of a signal from a fusion frame. We use a block sparsity model for fusion frames and then show that sparse signals under this model can be compressively sampled and reconstr...
متن کاملNonnegative Sparse PCA
We describe a nonnegative variant of the ”Sparse PCA” problem. The goal is to create a low dimensional representation from a collection of points which on the one hand maximizes the variance of the projected points and on the other uses only parts of the original coordinates, and thereby creating a sparse representation. What distinguishes our problem from other Sparse PCA formulations is that ...
متن کاملNonnegative Sparse PCA with Provable Guarantees
We introduce a novel algorithm to compute nonnegative sparse principal components of positive semidefinite (PSD) matrices. Our algorithm comes with approximation guarantees contingent on the spectral profile of the input matrix A: the sharper the eigenvalue decay, the better the quality of the approximation. If the eigenvalues decay like any asymptotically vanishing function, we can approximate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2011
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2010.2082536