Sparse regulatory networks
نویسندگان
چکیده
منابع مشابه
Sparse Regulatory Networks.
In many organisms the expression levels of each gene are controlled by the activation levels of known "Transcription Factors" (TF). A problem of considerable interest is that of estimating the "Transcription Regulation Networks" (TRN) relating the TFs and genes. While the expression levels of genes can be observed, the activation levels of the corresponding TFs are usually unknown, greatly incr...
متن کاملOn the identification of sparse gene regulatory networks
A linear dynamical model structure is introduced to describe the gene interactions in a sparse gene regulatory network, which generalizes the set-up in [9]. Techniques from robust statistics based on L1-minimization are introduced to estimate the underlying sparse network from a limited number of observations obtainable from micro-array data. Simulation experiments are carried out to analyze th...
متن کاملInference of Sparse Networks with Unobserved Variables. Application to Gene Regulatory Networks
Networks are becoming a unifying framework for modeling complex systems and network inference problems are frequently encountered in many fields. Here, I develop and apply a generative approach to network inference (RCweb) for the case when the network is sparse and the latent (not observed) variables affect the observed ones. From all possible factor analysis (FA) decompositions explaining the...
متن کاملH∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملSparse Coding in Sparse Winner Networks
This paper investigates a mechanism for reliable generation of sparse code in a sparsely connected, hierarchical, learning memory. Activity reduction is accomplished with local competitions that suppress activities of unselected neurons so that costly global competition is avoided. The learning ability and the memory characteristics of the proposed winner-take-all network and an oligarchy-take-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2010
ISSN: 1932-6157
DOI: 10.1214/10-aoas350