Sparse Signal Acquisition via Compressed Sensing and Principal Component Analysis
نویسندگان
چکیده
منابع مشابه
Sparse Principal Component Analysis via Variable Projection
Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis. We discuss a robust and scalable algorithm for computing sparse principal component analysis. Specifically, we model SPCA as a matrix factorization problem with orthogonality constraints, and develop specialized optimization algorithms that partially minimize a subset of the variables (varia...
متن کاملSparse principal component analysis via random projections
We introduce a new method for sparse principal component analysis, based on the aggregation of eigenvector information from carefully-selected random projections of the sample covariance matrix. Unlike most alternative approaches, our algorithm is non-iterative, so is not vulnerable to a bad choice of initialisation. Our theory provides great detail on the statistical and computational trade-of...
متن کاملSparse Principal Component Analysis
Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified...
متن کاملSelectional preference acquisition through sparse principal component analysis
Words in an utterance are not placed in their respective slots randomly from a uniform distribution. In English, for example, a verb will rarely, if ever, follow a determiner. This is a syntactic restriction. From another perspective, one would not expect to find a word such as defenestration as the object of eat. This is what is known as the selectional preference of a word for another word in...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Measurement Science Review
سال: 2018
ISSN: 1335-8871
DOI: 10.1515/msr-2018-0025