Sparsification of Rectangular Matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsiication of Rectangular Matrices

Given a rectangular matrix with more columns than rows, nd a base of linear combinations of the row vectors such that these contain as many zero entries as possible. This process is called \sparsiication" (of the matrix). A combinatorial search method to solve sparsiication is presented which needs exponentially many arithmetic operations (in terms of the size of the matrix). However, various p...

متن کامل

Sparsification of Matrices and Compressed Sensing

Compressed sensing is a relatively new signal processing technique whereby the limits proposed by the Shannon-Nyquist theorem can be exceeded under certain conditions imposed upon the signal. Such conditions occur in many real-world scenarios, and compressed sensing has emerging applications in medical imaging, big data, and statistics. Finding practical matrix constructions and computationally...

متن کامل

Pseudospectra of rectangular matrices

Pseudospectra of rectangular matrices vary continuously with the matrix entries, a feature that eigenvalues of these matrices do not have. Some properties of eigenvalues and pseudospectra of rectangular matrices are explored, and an efficient algorithm for the computation of pseudospectra is proposed. Applications are given in (square) eigenvalue computation (Lanczos iteration), square pseudosp...

متن کامل

Products of Random Rectangular Matrices

We study the asymptotic behaviour of points under matrix cocyles generated by rectangular matrices. In particular we prove a random Perron-Frobenius and a Multiplicative Ergodic Theorem. We also provide an example where such products of random rectangular matrices arise in the theory of random walks in random environments and where the Multiplicative Ergodic Theorem can be used to investigate r...

متن کامل

On Eigenvalues of Rectangular Matrices

Given a (k+1)-tuple A,B1, . . . , Bk of (m×n)-matrices withm ≤ n we call the set of all k-tuples of complex numbers {λ1, . . . , λk} such that the linear combination A + λ1B1 + λ2B2 + . . . + λkBk has rank smaller than m the eigenvalue locus of the latter pencil. Motivated primarily by applications to multi-parameter generalizations of the Heine-Stieltjes spectral problem, see [He] and [Vol], w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1998

ISSN: 0747-7171

DOI: 10.1006/jsco.1998.0204