Spatio-temporal Similarity Measure for Network Constrained Trajectory Data
نویسندگان
چکیده
منابع مشابه
Spatio-temporal Similarity Measure for Network Constrained Trajectory Data
Trajectory similarity measure is an important issue for analyzing the behavior of moving objects. In this paper, a similarity measure method for network constrained trajectories is proposed. It considers spatial and temporal features simultaneously in calculating spatio-temporal distance. The crossing points of network and semantic information of trajectory are used to extract the characteristi...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملMining Spatio-Temporal Patterns in Trajectory Data
Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to th...
متن کاملSimilarity Search on Uncertain Spatio-temporal Data
In this work, we address the problem of similarity search in a database of uncertain spatio-temporal objects. Each object is defined by a set of observations ((time,location)-tuples) and a Markov chain which describes the objects uncertain motion in space and time. To model similarity which is an important building block for many applications such as identifying frequent motion patterns or traj...
متن کاملA Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases
In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2011
ISSN: 1875-6891,1875-6883
DOI: 10.1080/18756891.2011.9727855