Spectral element discretization of the heat equation with variable diffusion coefficient

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-up for a reaction-diffusion equation with variable coefficient

We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

Spectral element spatial discretization error in solving highly anisotropic heat conduction equation

Article history: Received 2 May 2009 Received in revised form 18 November 2009 Accepted 24 December 2009 Available online 4 January 2010

متن کامل

Finite Element Methods for Convection Diffusion Equation

This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...

متن کامل

Spectral element discretization of the Maxwell equations

We consider a variational problem which is equivalent to the electromagnetism system with absorbing conditions on a part of the boundary, and we prove that it is well-posed. Next we propose a discretization relying on a finite difference scheme for the time variable and on spectral elements for the space variables, and we derive error estimates between the exact and discrete solutions. Résumé. ...

متن کامل

A Sparse Grid Discretization with Variable Coefficient in High Dimensions

We present a Ritz-Galerkin discretization on sparse grids using pre-wavelets, which allows to solve elliptic differential equations with variable coefficients for dimension d = 2, 3 and higher dimensions d > 3. The method applies multilinear finite elements. We introduce an efficient algorithm for matrix vector multiplication using a Ritz-Galerkin discretization and semi-orthogonality. This alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentationes Mathematicae Universitatis Carolinae

سال: 2016

ISSN: 0010-2628,1213-7243

DOI: 10.14712/1213-7243.2015.160