Spectral mapping theorems on a tensor product
نویسندگان
چکیده
منابع مشابه
A Note on Tensor Product of Graphs
Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.
متن کاملA note on spectral mapping theorem
This paper aims to present the well-known spectral mapping theorem for multi-variable functions.
متن کاملSpectral Mapping Theorems for Hyponormal Operators
Let T=H+iK be hyponormal and Q be a strictly monotone increasing continuous function on s(H ). We define ~ Q(T ) by ~ Q(T )=Q(H )+iK. In this paper, we show that if z is an isolated eigenvalue of ~ Q(T ), then the corresponding Riesz projection is self-adjoint. Also we introduce Xia spectrum and study the existence of an invariant subspace of an operator ~ Q(T ).
متن کاملOn tensor product $L$-functions and Langlands functoriality
In the spirit of the Langlands proposal on Beyond Endoscopy we discuss the explicit relation between the Langlands functorial transfers and automorphic $L$-functions. It is well-known that the poles of the $L$-functions have deep impact to the Langlands functoriality. Our discussion also includes the meaning of the central value of the tensor product $L$-functions in terms of the Langl...
متن کاملA tensor product approach to the abstract partial fourier transforms over semi-direct product groups
In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1973
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1973-13170-2