Spectral pollution and second-order relative spectra for self-adjoint operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Theory for Compact Self-Adjoint Operators

This agrees with the definition of the spectrum in the matrix case, where the resolvent set comprises all complex numbers that are not eigenvalues. In terms of its spectrum, we will see that a compact operator behaves like a matrix, in the sense that its spectrum is the union of all of its eigenvalues and 0. We begin with the eigenspaces of a compact operator. We start with two lemmas that we w...

متن کامل

Spectral Theorem for Self-adjoint Linear Operators

Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) o...

متن کامل

Spectral Theorem for Bounded Self-adjoint Operators

Diagonalization is one of the most important topics one learns in an elementary linear algebra course. Unfortunately, it only works on finite dimensional vector spaces, where linear operators can be represented by finite matrices. Later, one encounters infinite dimensional vector spaces (spaces of sequences, for example), where linear operators can be thought of as ”infinite matrices”. Extendin...

متن کامل

The Spectral Theorem for Self-Adjoint and Unitary Operators

(1.1) (Au, v) = (u, A∗v), u, v ∈ H. We say A is self-adjoint if A = A∗. We say U ∈ L(H) is unitary if U∗ = U−1. More generally, if H is another Hilbert space, we say Φ ∈ L(H,H) is unitary provided Φ is one-to-one and onto, and (Φu, Φv)H = (u, v)H , for all u, v ∈ H. If dim H = n < ∞, each self-adjoint A ∈ L(H) has the property that H has an orthonormal basis of eigenvectors of A. The same holds...

متن کامل

On the computation of spectra and pseudospectra of self-adjoint and non-self-adjoint Schrödinger operators

We consider the long standing open question on whether one can actually compute spectra and pseudospectra of arbitrary (possibly non-self-adjoint) Schrödinger operators.We conclude that the answer is affirmative for “almost all” such operators, meaning that the operators must satisfy rather weak conditions such as the spectrum cannot be empty nor the whole plane. We include algorithms for the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2004

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/24.3.393