Spectral principal component analysis of dynamic process data
نویسندگان
چکیده
منابع مشابه
Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis
These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...
متن کاملDynamic Principal Component Analysis Using Integral Transforms
The paper describes an approach to dynamic multivariate analysis in which principal component analysis (PCA) is combined with integral transform techniques. The aim was to detect correlations when process dynamics cause lags or time delays. The techniques give a signature that characterises the correlated measurements. Tools for Fourier and wavelet PCA have been developed and tested. They have ...
متن کاملFunctional principal component analysis of fMRI data.
We describe a principal component analysis (PCA) method for functional magnetic resonance imaging (fMRI) data based on functional data analysis, an advanced nonparametric approach. The data delivered by the fMRI scans are viewed as continuous functions of time sampled at the interscan interval and subject to observational noise, and are used accordingly to estimate an image in which smooth func...
متن کاملPrincipal Component Analysis of symmetric fuzzy data
Principal Component Analysis (PCA) is a well-known tool often used for the exploratory analysis of a numerical data set. Here an extension of classical PCA is proposed, which deals with fuzzy data (in short PCAF), where the elementary datum cannot be recognized exactly by a speci2c number but by a center, two spread measures and a membership function. Speci2cally, two di3erent PCAF methods, ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Control Engineering Practice
سال: 2002
ISSN: 0967-0661
DOI: 10.1016/s0967-0661(02)00035-7