Split t-structures and torsion pairs in hereditary categories

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsion Pairs in Triangulated Categories

We study the properties of torsion pairs in triangulated category by introducing the notions of d-Ext-projectivity and d-Ext-injectivity. In terms of -mutation of torsion pairs, we investigate the properties of torsion pairs in triangulated category C D    U Z D Z D

متن کامل

T-structures and torsion pairs in a 2-Calabi-Yau triangulated category

For a Calabi-Yau triangulated category C of Calabi-Yau dimension d with a d−cluster tilting subcategory T , the decomposition of C is determined by the decomposition of T satisfying ”vanishing condition” of negative extension groups, namely, C = ⊕i∈ICi, where Ci, i ∈ I are triangulated subcategories, if and only if T = ⊕i∈ITi, where Ti, i ∈ I are subcategories with HomC(Ti[t],T j) = 0,∀1 ≤ t ≤ ...

متن کامل

t-Structures are Normal Torsion Theories

We characterize t-structures in stable∞-categories as suitable quasicategorical factorization systems. More precisely we show that a t-structure t on a stable∞-category C is equivalent to a normal torsion theory F on C, i.e. to a factorization system F = (E,M) where both classes satisfy the 3-for-2 cancellation property, and a certain compatibility with pullbacks/pushouts. Introduction. The ide...

متن کامل

Ptolemy Diagrams and Torsion Pairs in the Cluster Categories of Dynkin Type D

We give a complete classification of torsion pairs in the cluster category of Dynkin type Dn, via a bijection to new combinatorial objects called Ptolemy diagrams of type D. For the latter we give along the way different combinatorial descriptions. One of these allows us to count the number of torsion pairs in the cluster category of type Dn by providing their generating function explicitly.

متن کامل

TORSION CLASSES AND t-STRUCTURES IN HIGHER HOMOLOGICAL ALGEBRA

Higher homological algebra was introduced by Iyama. It is also known as n-homological algebra where n > 2 is a fixed integer, and it deals with n-cluster tilting subcategories of abelian categories. All short exact sequences in such a subcategory are split, but it has nice exact sequences with n + 2 objects. This was recently formalised by Jasso in his theory of n-abelian categories. There is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2018

ISSN: 0219-4988,1793-6829

DOI: 10.1142/s0219498818502183