SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching

نویسندگان

چکیده

To reduce the impact of volatility on photovoltaic (PV) power generation forecasting and achieve improved accuracy, this article provides an in-depth analysis characteristics PV outputs under typical weather conditions. The trend similarity between simultaneous are found, a hybrid prediction model based feature matching, singular spectrum (SSA) long short-term memory (LSTM) network is proposed. In paper, correlation used to verify generation; days historical meteorological data calculated through grey relation analysis; similar generated levels searched for phase matching. input time series decomposed by component, oscillation component noise extracted; principal reconstruction carried out each component. Then, LSTM established reconstructed subsequences, external controlled compare obtained results. Finally, performance evaluated plant in certain area. experimental results prove that SSA-LSTM has best performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Short-Term Photovoltaic Power Prediction Model Based on an FOS-ELM Algorithm

With the increasing proportion of photovoltaic (PV) power in power systems, the problem of its fluctuation and intermittency has become more prominent. To reduce the negative influence of the use of PV power, we propose a short-term PV power prediction model based on the online sequential extreme learning machine with forgetting mechanism (FOS-ELM), which can constantly replace outdated data wi...

متن کامل

Short-term Power Prediction of the Photovoltaic System Based on QPSO-SVM

Short-term power prediction of the photovoltaic system is one of the effective means to reduce the adverse effects of photovoltaic power on the grid. Since the efficiency of the traditional support vector machine (SVM) prediction method is low, this paper proposes the SVM based on the parameter optimization method of quantum particle swarm optimization (QPSO), and then apply into the power shor...

متن کامل

improving short-term wind power prediction with neural network and ica algorithm and input feature selection

according to this fact that wind is now a part of global energy portfolio and due to unreliable and discontinuous production of wind energy; prediction of wind power value is proposed as a main necessity. in recent years, various methods have been proposed for wind power prediction. in this paper the prediction structure involves feature selection and use of artificial neural network (ann). in ...

متن کامل

Study of Short-Term Photovoltaic Power Forecast Based on Error Calibration under Typical Climate Categories

Abstract: With the increasing permeability of photovoltaic (PV) power production, the uncertainties and randomness of PV power have played a critical role in the operation and dispatch of the power grid and amplified the abandon rate of PV power. Consequently, the accuracy of PV power forecast urgently needs to be improved. Based on the amplitude and fluctuation characteristics of the PV power ...

متن کامل

Statistical Learning for Short-Term Photovoltaic Power Predictions

A precise prediction of photovoltaic (PV) power has an important part to play as basis for operation and management strategies for a reliable and economical integration into the power grid. Due to fast changing weather conditions, e.g., clouds and fog, a precise forecast in the minute to hour range can be a difficult undertaking. But the growing IT-infrastructure allows a fine screening of PV p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2022

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15207806