SSC-EKE: Semi-supervised classification with extensive knowledge exploitation
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Classification with Universum
The Universum data, defined as a collection of ”nonexamples” that do not belong to any class of interest, have been shown to encode some prior knowledge by representing meaningful concepts in the same domain as the problem at hand. In this paper, we address a novel semi-supervised classification problem, called semi-supervised Universum, that can simultaneously utilize the labeled data, unlabel...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملOn Semi-Supervised Classification
A graph-based prior is proposed for parametric semi-supervised classification. The prior utilizes both labelled and unlabelled data; it also integrates features from multiple views of a given sample (e.g., multiple sensors), thus implementing a Bayesian form of co-training. An EM algorithm for training the classifier automatically adjusts the tradeoff between the contributions of: (a) the label...
متن کاملSemi-Supervised Sequence Classification with HMMs
Using unlabeled data to help supervised learning has become an increasingly attractive methodology and proven to be effective in many applications. This paper applies semi-supervised classification algorithms, based on hidden Markov models (HMMs), to classify sequences. For model-based classification, semisupervised learning amounts to using both labeled and unlabeled data to train model parame...
متن کاملSemi-Supervised Classification with Graph Convolutional Networks
We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2018
ISSN: 0020-0255
DOI: 10.1016/j.ins.2017.08.093