Stability and bifurcation of a class of discrete-time neural networks
نویسندگان
چکیده
منابع مشابه
Stability and Bifurcation of a Class of Discrete-Time Cohen-Grossberg Neural Networks with Delays
A class of discrete-time Cohen-Grossberg neural networkswith delays is investigated in this paper. By analyzing the corresponding characteristic equations, the asymptotical stability of the null solution and the existence of Neimark-Sacker bifurcations are discussed. By applying the normal form theory and the center manifold theorem, the direction of the Neimark-Sacker bifurcation and the stabi...
متن کاملFINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملGlobal Stability of a Class of Discrete-Time Recurrent Neural Networks
This paper presents several analytical results on global asymptotic stability (GAS) and global exponential stability (GES) for the equilibrium states of a general class of discrete-time recurrent neural networks (DTRNNS) with asymmetric connection weight matrices and globally Lipschitz continuous and monotone nondecreasing activation functions. A necessary and sufficient condition is formulated...
متن کاملAbsolute Stability Analysis for a Class of Discrete-Time Neural Networks
Abstract − The asymptotic behavior of a class discrete-time Hopfield neural network is studied in this paper. Some properties for this class discrete-time neural network, such as the boundedness of motion trajectory, the uniqueness and the absolute stability of equilibrium point etc, are obtained. In this paper, the sufficient conditions related to the existence of unique equilibrium point and ...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2007
ISSN: 0307-904X
DOI: 10.1016/j.apm.2006.08.006