STABILITY FOR JORDAN LEFT DERIVATIONS MAPPING INTO THE RADICAL OF BANACH ALGEBRAS
نویسندگان
چکیده
منابع مشابه
Left Jordan derivations on Banach algebras
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
متن کاملLeft derivable or Jordan left derivable mappings on Banach algebras
Let $mathcal{A}$ be a unital Banach algebra, $mathcal{M}$ be a left $mathcal{A}$-module, and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$. We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$, then the following four conditions are equivalent: (i) $delta$ is a Jordan left de...
متن کاملOn the stability of generalized derivations on Banach algebras
We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.
متن کاملJordan Homomorphisms and Derivations on Semisimple Banach Algebras
1. Introduction. One may construct a Jordan homomorphism from one (associative) ring into another ring by taking the sum of a homo-morphism and an antihomomorphism of the first ring into two ideals in the second ring with null intersection [6]. A number of authors have considered conditions on the rings that imply that every Jordan homomorphism, or isomorphism, is of this form [6], [3], [7], [1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Honam Mathematical Journal
سال: 2012
ISSN: 1225-293X
DOI: 10.5831/hmj.2012.34.1.55