Stability of heat kernel estimates for symmetric non-local Dirichlet forms

نویسندگان

چکیده

In this paper, we consider symmetric jump processes of mixed-type on metric measure spaces under general volume doubling condition, and establish stability two-sided heat kernel estimates upper bounds. We obtain their stable equivalent characterizations in terms the jumping kernels, variants cut-off Sobolev inequalities, Faber-Krahn inequalities. particular, for ? \alpha -stable-like even with alttext="alpha greater-than-or-equal-to 2"> ? 2 encoding="application/x-tex">\alpha \ge 2 when underlying have walk dimensions larger than alttext="2"> encoding="application/x-tex">2 , which has been one major open problems area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Dirichlet Heat Kernel Estimates for Non-local Operators under Feynman-kac Perturbation

Abstract. In this paper we show that Dirichlet heat kernel estimates for a class of (not necessarily symmetric) Markov processes are stable under nonlocal Feynman-Kac perturbations. This class of processes includes, among others, (reflected) symmetric stable-like processes in closed d-sets in Rd, killed symmetric stable processes, censored stable processes in C1,1 open sets, as well as stable p...

متن کامل

Dirichlet Heat Kernel Estimates for Rotationally Symmetric Lévy processes

In this paper, we consider a large class of purely discontinuous rotationally symmetric Lévy processes. We establish sharp two-sided estimates for the transition densities of such processes killed upon leaving an open set D. When D is a κ-fat open set, the sharp two-sided estimates are given in terms of surviving probabilities and the global transition density of the Lévy process. When D is a C...

متن کامل

Heat Kernel Estimates for Dirichlet Fractional Laplacian

In this paper, we consider the fractional Laplacian −(−∆)α/2 on an open subset in R with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such Dirichlet fractional Laplacian in C open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C open set. Our results are the first sharp two-sided ...

متن کامل

Dirichlet Heat Kernel Estimates for Δ +δ

For d ≥ 1 and 0 < β < α < 2, consider a family of pseudo differential operators {Δ + aΔ; a ∈ [0,1]} on R that evolves continuously from Δ to Δ + Δ. It gives arise to a family of Lévy processes {X, a ∈ [0,1]} on R, where each X is the independent sum of a symmetric α-stable process and a symmetric β-stable process with weight a. For any C open set D ⊂R, we establish explicit sharp two-sided esti...

متن کامل

Non-symmetric Perturbations of Symmetric Dirichlet Forms

We provide a path-space integral representation of the semigroup associated with the quadratic form obtained by lower order perturbation of a symmetric local Dirichlet form. The representation is a combination of Feynman-Kac and Girsanov formulas, and extends previously known results in the framework of symmetric diffusion processes through the use of the Hardy class of smooth measures, which c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Memoirs of the American Mathematical Society

سال: 2021

ISSN: ['1947-6221', '0065-9266']

DOI: https://doi.org/10.1090/memo/1330