Stability Properties for the Delay Integro-Differential Equation

نویسندگان

چکیده

In this paper stability inequalities for the linear nonhomogeneous Volterra delay integro-differential equation (VDIDE) is being established. The particular problems are encountered to show applicability of method and confirm predicted theoretical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability properties of second order delay integro-differential equations

A basic theorem on the behavior of solutions of scalar linear second order delay integro-differential equations is established. As a consequence of this theorem, a stability criterion is obtained.

متن کامل

Periodic solution for a delay integro-differential equation in biomathematics

Sufficient conditions for the existence and uniqueness of periodic solution of a delay integro-differential equation which arise in biomathematics are given. The results use a bidimensional variant of the Perov’s fixed point theorem. AMSMathematics Subject Classification: Primary 45J05, Secondary 34A12, 65R20, 65D32.

متن کامل

On the Stability of Delay Integro-differential Equations

Some new stability results are given for a delay integro-differential equation. A basis theorem on the behavior of solutions of delay integro-differential equations is established. As a consequence of this theorem, a stability criterion is obtained.

متن کامل

The stability relation between ordinary and delay-integro-differential equations

This paper deals with the exponential stability of a class of nonlinear delay-integrodifferential equations of the form ẋ(t) = f ( t, x(t), x(t − τ1(t)), ∫ t t−τ2(t) g(t, s, x(s))ds ) , t ≥ t0, where τi(t) > 0 for i = 1, 2 and t ≥ t0. The stability relation between ordinary and delay-integro-differential equations is given. It is shown under some suitable conditions that a delay-integro-differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Gazi university journal of science

سال: 2023

ISSN: ['2147-1762']

DOI: https://doi.org/10.35378/gujs.988728