Stabilizations of Strange Attractors by Feedback Linearization
نویسندگان
چکیده
منابع مشابه
Strange attractors
do in biology and is, I think, one of the great ways to do innovative work.... The diversity in the living world is so large, and since everything is connected in some way, let’s find the best one.” Research focused on human and medical application is certainly an important component in neuroscience. But such research tends to dwell more on technological improvements rather than on basic discov...
متن کاملClassification of strange attractors by integers.
We show how to characterize a strange attractor by a set of integers. These are extracted from the chaotic time-series data by first reconstructing the low-period orbits and then determining the template, or knot holder, which supports all periodic orbits embedded in the strange attractor, and the strange attractor itself. The template is identified by a set of integers which therefore characte...
متن کاملStrange attractors are classified by bounding Tori.
There is at present a doubly discrete classification for strange attractors of low dimension, d(L)<3. A branched manifold describes the stretching and squeezing processes that generate the strange attractor, and a basis set of orbits describes the complete set of unstable periodic orbits in the attractor. To this we add a third discrete classification level. Strange attractors are organized by ...
متن کاملCharacterizing strange nonchaotic attractors.
Strange nonchaotic attractors typically appear in quasiperiodically driven nonlinear systems. Two methods of their characterization are proposed. The first one is based on the bifurcation analysis of the systems, resulting from periodic approximations of the quasiperiodic forcing. Second, we propose to characterize their strangeness by calculating a phase sensitivity exponent, that measures the...
متن کاملBifurcations and Strange Attractors
We reviews the theory of strange attractors and their bifurcations. All known strange attractors may be subdivided into the following three groups: hyperbolic, pseudo-hyperbolic ones and quasi-attractors. For the first ones the description of bifurcations that lead to the appearance of Smale-Williams solenoids and Anosov-type attractors is given. The definition and the description of the attrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research Journal of Applied Sciences, Engineering and Technology
سال: 2014
ISSN: 2040-7459,2040-7467
DOI: 10.19026/rjaset.8.938