Stacking strategy-assisted random forest algorithm and its application

نویسندگان

چکیده

Short-term power load forecasting provides important guidance for the improvement of marketing and control levels enterprises. In this paper, a novel method, named RF-TStacking, is proposed to forecast short-term load. This study starts from influence factors load, random forest applied estimate importance Based on Stacking strategy, integration LightGBM realized achieve forecasting. To improve generalization ability model, put back sampling used sample each primary learner, average value taken as result learner. The Bayesian optimization adjust super parameters model accuracy selection influencing factors. data region in northwest China are testing, it found that can provide stable prediction results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction and validation of translation metacognitive strategy questionnaire and its application to translation quality

like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...

Diagnosis of Diabetes Using a Random Forest Algorithm

Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...

متن کامل

An Improved Random Forest Algorithm for Class-Imbalanced Data Classification and its Application in PAD Risk Factors Analysis

The classification problem is one of the important research subjects in the field of machine learning. However, most machine learning algorithms train a classifier based on the assumption that the number of training examples of classes is almost equal. When a classifier was trained on imbalanced data, the performance of the classifier declined clearly. For resolving the class-imbalanced problem...

متن کامل

A Random Forest Turbulence Prediction Algorithm

Unlike traditional pilot reports, in-situ EDR reports of atmospheric turbulence from commercial aircraft contain both positive and negative instances, are reported regularly, and have relatively accurate positions and timestamps. These data therefore make it feasible to perform more sophisticated analyses of the causes of atmospheric turbulence than were formerly possible. Several real-time gri...

متن کامل

Random Forest Algorithm for Land Cover Classification

Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIP Advances

سال: 2023

ISSN: ['2158-3226']

DOI: https://doi.org/10.1063/5.0141913