Stanley depth and symbolic powers of monomial ideals

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stanley Depth of the Integral Closure of Monomial Ideals

Let I be a monomial ideal in the polynomial ring S = K[x1, . . . , xn]. We study the Stanley depth of the integral closure I of I. We prove that for every integer k ≥ 1, the inequalities sdepth(S/Ik) ≤ sdepth(S/I) and sdepth(Ik) ≤ sdepth(I) hold. We also prove that for every monomial ideal I ⊂ S there exist integers k1, k2 ≥ 1, such that for every s ≥ 1, the inequalities sdepth(S/I1) ≤ sdepth(S...

متن کامل

Symbolic Powers of Monomial Ideals and Vertex Cover Algebras

We introduce and study vertex cover algebras of weighted simplicial complexes. These algebras are special classes of symbolic Rees algebras. We show that symbolic Rees algebras of monomial ideals are finitely generated and that such an algebra is normal and Cohen-Macaulay if the monomial ideal is squarefree. For a simple graph, the vertex cover algebra is generated by elements of degree 2, and ...

متن کامل

Symbolic Powers of Monomial Ideals and Vertex Cover Algebras

We introduce and study vertex cover algebras of weighted simplicial complexes. These algebras are special classes of symbolic Rees algebras. We show that symbolic Rees algebras of monomial ideals are finitely generated. Dedicated to Winfried Bruns on the occasion of his sixtieth birthday

متن کامل

Symbolic Powers of Monomial Ideals and Vertex Cover Algebras

We introduce and study vertex cover algebras of weighted simplicial complexes. These algebras are special classes of symbolic Rees algebras. We show that symbolic Rees algebras of monomial ideals are finitely generated. Dedicated to Winfried Bruns on the occasion of his sixtieth birthday

متن کامل

An Algorithm to Compute the Stanley Depth of Monomial Ideals

Let K be a field, S = K[x1, . . . ,xn] be the polynomial ring in n variables with coefficient in K and M be a finitely generated Zn-graded S-module. Let u ∈M be a homogeneous element in M and Z a subset of the set of variables {x1, . . . ,xn}. We denote by uK[Z] the K-subspace of M generated by all elements uv where v is a monomial in K[Z]. If uK[Z] is a free K[Z]-module, the Zn-graded K-space ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 2017

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-25501