Star saturation number of random graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

Saturation in random graphs

A graph H is Ks-saturated if it is a maximal Ks-free graph, i.e., H contains no clique on s vertices, but the addition of any missing edge creates one. The minimum number of edges in a Ks-saturated graph was determined over 50 years ago by Zykov and independently by Erdős, Hajnal and Moon. In this paper, we study the random analog of this problem: minimizing the number of edges in a maximal Ks-...

متن کامل

Graphs with Induced-Saturation Number Zero

Given graphs G and H, G is H-saturated if H is not a subgraph of G, but for all e / ∈ E(G), H appears as a subgraph of G + e. While for every n > |V (H)|, there exists an n-vertex graph that is H-saturated, the same does not hold for induced subgraphs. That is, there exist graphs H and values of n > |V (H)|, for which every n-vertex graph G either contains H as an induced subgraph, or there exi...

متن کامل

Independent Number and Dominating Number of (n,k)- Star Graphs

In Graph Theory, independent number and, dominating number are three of the important parameters to measure the resilience of graphs, respectively denoted by ( ) G  and ( ) G  for a graph G . But predecessors have proved that computing them are very hard. So computing ( ) G  and ( ) G  of some particular known graphs is extremely valuable. In this paper, we determine ( ) G  and ( ) G  of ...

متن کامل

Edge Roman Star Domination Number on Graphs

Edge Roman Star Domination Number on Graphs Angshu Kumar Sinha, Akul Rana and Anita Pal Department of Mathematics, NSHM Knowledge Campus Durgapur -713212, INDIA. e-mail: [email protected] Department of Mathematics, Narajole Raj College Narajole, Paschim Medinipur721211, INDIA. e-mail: [email protected] Department of Mathematics, National Institute of Technology Durgapur Durgapur-713209, I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2018

ISSN: 0012-365X

DOI: 10.1016/j.disc.2017.09.026