STATISTICAL BIAS IN MAXIMUM LIKELIHOOD ESTIMATORS OF ITEM PARAMETERS
نویسندگان
چکیده
منابع مشابه
Bias Reduction for the Maximum Likelihood Estimators of the Parameters in the Half-Logistic Distribution
We derive analytic expressions for the biases of the maximum likelihood estimators of the scale parameter in the half-logistic distribution with known location, and of the location parameter when the latter is unknown. Using these expressions to bias-correct the estimators is highly effective, without adverse consequences for estimation mean squared error. The overall performance of the first o...
متن کاملOn the Bias of the Maximum Likelihood Estimators of Parameters of the Weibull Distribution
Usually, the parameters of a Weibull distribution are estimated by maximum likelihood estimation. To reduce the biases of the maximum likelihood estimators (MLEs) of two-parameter Weibull distributions, we propose analytic bias-corrected MLEs. Two other common estimators of Weibull distributions, least-squares estimators and percentiles estimators, are also introduced. Based on a comparison of ...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملMaximum Likelihood Estimators in Magnetic Resonance Imaging
Images of the MRI signal intensity are normally constructed by taking the magnitude of the complex-valued data. This results in a biased estimate of the true signal intensity. We consider this as a problem of parameter estimation with a nuisance parameter. Using several standard techniques for this type of problem, we derive a variety of estimators for the MRI signal, some previously published ...
متن کاملThe Convergence of Lossy Maximum Likelihood Estimators
Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ETS Research Report Series
سال: 1982
ISSN: 2330-8516
DOI: 10.1002/j.2333-8504.1982.tb01306.x