STATISTICAL BIAS IN MAXIMUM LIKELIHOOD ESTIMATORS OF ITEM PARAMETERS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias Reduction for the Maximum Likelihood Estimators of the Parameters in the Half-Logistic Distribution

We derive analytic expressions for the biases of the maximum likelihood estimators of the scale parameter in the half-logistic distribution with known location, and of the location parameter when the latter is unknown. Using these expressions to bias-correct the estimators is highly effective, without adverse consequences for estimation mean squared error. The overall performance of the first o...

متن کامل

On the Bias of the Maximum Likelihood Estimators of Parameters of the Weibull Distribution

Usually, the parameters of a Weibull distribution are estimated by maximum likelihood estimation. To reduce the biases of the maximum likelihood estimators (MLEs) of two-parameter Weibull distributions, we propose analytic bias-corrected MLEs. Two other common estimators of Weibull distributions, least-squares estimators and percentiles estimators, are also introduced. Based on a comparison of ...

متن کامل

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

Maximum Likelihood Estimators in Magnetic Resonance Imaging

Images of the MRI signal intensity are normally constructed by taking the magnitude of the complex-valued data. This results in a biased estimate of the true signal intensity. We consider this as a problem of parameter estimation with a nuisance parameter. Using several standard techniques for this type of problem, we derive a variety of estimators for the MRI signal, some previously published ...

متن کامل

The Convergence of Lossy Maximum Likelihood Estimators

Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ETS Research Report Series

سال: 1982

ISSN: 2330-8516

DOI: 10.1002/j.2333-8504.1982.tb01306.x