Storage capacity of attractor neural networks with depressing synapses
نویسندگان
چکیده
منابع مشابه
Storage capacity of attractor neural networks with depressing synapses.
We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard mean-field approach. We find that at T=0 the critical storage capacity decreases with the degree of the depression. We confirm the validity of our main mean-field results with numeric...
متن کاملAttractor Neural Networks with Hypercolumns
We investigate attractor neural networks with a modular structure, where a local winner-takes-all rule acts within the modules (called hypercolumns). We make a signal-to-noise analysis of storage capacity and noise tolerance, and compare the results with those from simulations. Introducing local winner-takes-all dynamics improves storage capacity and noise tolerance, while the optimal size of t...
متن کاملStorage capacity of two-dimensional neural networks.
We investigate the maximum number of embedded patterns in the two-dimensional Hopfield model. The grand state energies of two specific network states, namely, the energies of the pure-ferromagnetic state and the state of specific one stored pattern are calculated exactly in terms of the correlation function of the ferromagnetic Ising model. We also investigate the energy landscape around them a...
متن کاملAttractor neural networks with activity-dependent synapses: The role of synaptic facilitation
We studied an autoassociative neural network with dynamic synapses which include a facilitating mechanism. We have developed a general mean-field framework to study the relevance of the different parameters defining the dynamics of the synapses and their influence on the collective properties of the network. Depending on these parameters, the network shows different types of behaviour including...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2002
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.66.061910