Strauss and Lions Type Theorems for the Fractional Sobolev Spaces with Variable Exponent and Applications to Nonlocal Kirchhoff–Choquard Problem

نویسندگان

چکیده

This paper deals with Strauss and Lions-type theorems for fractional Sobolev spaces variable exponent $$W^{s,p(.),{\tilde{p}}(.,.)} (\Omega )$$ , when p $${\tilde{p}}$$ satisfy some conditions. As application, we study the existence of solutions a class Kirchhoff–Choquard problem in $${\mathbb {R}}^N$$ .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear eigenvalue problems in Sobolev spaces with variable exponent

Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...

متن کامل

Traces for Fractional Sobolev Spaces with Variable Exponents

In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p : Ω × Ω → (1,∞) and q : ∂Ω→ (1,∞) are continuous functions such that (n− 1)p(x, x) n− sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n− sp(x, x) > 0}, then the inequality ‖f‖Lq(·)(∂Ω) ≤ C { ‖f‖Lp̄(·)(Ω) + [f ]s,p(·,·) } holds. Here p̄(x) = p(x, x) and [f ]s,p(·,·) denotes the fractional semi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2021

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-020-01661-w