Strauss and Lions Type Theorems for the Fractional Sobolev Spaces with Variable Exponent and Applications to Nonlocal Kirchhoff–Choquard Problem
نویسندگان
چکیده
This paper deals with Strauss and Lions-type theorems for fractional Sobolev spaces variable exponent $$W^{s,p(.),{\tilde{p}}(.,.)} (\Omega )$$ , when p $${\tilde{p}}$$ satisfy some conditions. As application, we study the existence of solutions a class Kirchhoff–Choquard problem in $${\mathbb {R}}^N$$ .
منابع مشابه
Lower Semicontinuity of Functionals of Fractional Type and Applications to Nonlocal Equations with Critical Sobolev Exponent
In the present paper we study the weak lower semicontinuity of the functional
متن کاملNonlinear eigenvalue problems in Sobolev spaces with variable exponent
Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...
متن کاملTraces for Fractional Sobolev Spaces with Variable Exponents
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p : Ω × Ω → (1,∞) and q : ∂Ω→ (1,∞) are continuous functions such that (n− 1)p(x, x) n− sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n− sp(x, x) > 0}, then the inequality ‖f‖Lq(·)(∂Ω) ≤ C { ‖f‖Lp̄(·)(Ω) + [f ]s,p(·,·) } holds. Here p̄(x) = p(x, x) and [f ]s,p(·,·) denotes the fractional semi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2021
ISSN: ['1660-5454', '1660-5446']
DOI: https://doi.org/10.1007/s00009-020-01661-w